New Paper: CO2 Has ‘Negligible’ Influence On Earth’s Temperature

Water Vapour  Climate Forcing ‘Up To 200 Times’ Greater, ‘Overrides Any Effect By CO2’

H. Douglas Lightfoot profile PDF



Lightfoot and Mamer, 2017

(1) Robust scientific evidence shows the sun angle controls water vapour content of the atmosphere, the main component of back radiation, as it cycles annually.

Back radiation, water vapour concentration, and atmospheric temperature follow the sun angle daily and over the seasons, increasing as the sun angle increases and falling as it decreases. Water vapour concentration is measured as parts per million by volume (ppmv) or by the ratio of the number of water vapour molecules for each CO2 molecule (H2O/CO2 ratio).

The purpose of this study is to present robust evidence that the sun is working with water vapour to control the Earth’s climate and to show that the influence of CO2 on atmospheric temperature is so small as to be negligible.

(2) Water vapour content measured as the ratio of the number of water molecules to CO2 molecules varies from 1:1 near the Poles to 97:1 in the Tropics.

The H2O/CO2 ratio along the top of the plot is based on a CO2 concentration of 400 ppmv. Because water vapour is the most abundant GHG, it is reasonable to plot water vapour concentration against back radiation.  … It is evident from Figure 1 that (1) the upper limit to the back radiation of GHGs is approximately 420 W m2 at water vapour concentration of approximately 32,000 ppmv, or an H2O/CO2 ratio of 80 [to 1]; (2) the lowest back radiation is 97 W m2 at the South Pole and (3) small increases in water vapour give the most increase in back radiation above the Arctic and Antarctic circles because of the steepness of the curve. These [polar] areas together are only 8.4% of the Earth’s surface and have little effect on the Earth’s average atmospheric temperature.

The CO2 baseline concentration of approximately 400 ppmv at the time of the calculation is equivalent to 0.0138 mole/kg of dry air. Thus, the H2O/CO2 ratio is 0.601/0.0138 or 43.5 molecules of water vapour for each molecule of CO2.  [17,400 ppm water vapour vs. 400 ppmv CO2.]

The sun angle determines the H2O/CO2 ratio … There is little sunlight in winter above the Arctic Circle, such as at Inuvik, Canada, and the average H2O/CO2 ratio is as low as 1:1. In summer it rises to an average maximum of 29:1.  … The highest sun angle corresponds to the highest H2O/CO2 ratio of 29:1 and the lowest angle to the lowest of 1:1. The H2O/CO2 values for Singapore and Nairobi also show the highest ratios occur at the highest sun angles.  The difference in H2O/CO2 ratios between summer and winter is larger towards the Poles and smaller towards the equator. The levels of both the summer and winter ratios depend on whether or not there is a relatively warm ocean nearby to provide the water vapour.

(3) The effect of back radiation [water vapour] on Earth’s atmosphere is up to 200 times larger than that of CO2 and works in the opposite direction.

The actual CO2 concentration experienced at any specific location is determined by the physical gas laws discovered by Boyle and Charles. For example, the elevation of Boulder, Colorado, is 1655 m, the average July high temperature is 33°C and the average low in January is 2°C. The calculated CO2 concentrations based on 407.9 ppmv in dry air are 298.0 and 336.4 ppmv, respectively. The RF [radiative forcing] of CO2 in July at 298.0 ppmv is 5.22ln(336.4/298.0) ¼ 0.63W m2 lower than in January at 336.4 ppmv. While the RF of CO2 was falling by 0.63W m2 from January to July, the back radiation was increasing by 110 W m2 from 240 to 350 W m2. From July to January the situation reverses. This shows back radiation [water vapour] acts in opposition to the warming effect of the CO2, is larger by (110/0.63) = 174 times at the peak and overrides any effect by CO2 on atmospheric temperature.

If there is a warming effect by CO2 on the atmosphere, it is too small to measure and can be considered as being negligible. In fact, it is fair to say there is virtually a complete disconnect between the concentration of CO2 in the atmosphere and atmospheric temperature.


A Selection of Supporting Scientific Papers

Curtin, 2012

We show that a comprehensive analysis results in relegating [CO2] to insignificance as a determinant of climate change and that atmospheric water vapour arising almost exclusively from nonhuman sources is by far the largest source of radiative forcing and temperature change.  … The failure of the regression to reveal any contribution of changes in [GHG] to changes in Gistemp’s GMT anomalies is obvious both from Figure 1 and from Table 2, which shows total statistical insignificance because with t < 2.0, and 𝑃>0.05, the critical values are not attained. These results validate the null hypothesis from Hegerl et al. that there is no discernible and statistically significant causation of global temperature change attributable to the radiative forcing from anthropogenic changes in noncondensing GHGs. … [O]nly the [H2O] variable is statistically significant, accounting for more than 90 per cent of the changes in mean maximum temperature over the period 1960–2006. …  [H2O] accounts for more than 90 per cent of temperature change near where C. D. Keeling began his measurements of the atmospheric concentration of CO2 back in 1958.

[W]ater vapor is the most potent greenhouse gas because it absorbs strongly in the infrared region of the light spectrum, first demonstrated by Tyndall (1861), despite the conventional view that because the water vapor content of the atmosphere will increase in response to warmer temperatures, water vapor is only a feedback that merely amplifies the climate warming effect due to increased carbon dioxide alone. In reality, the [H2O] variable in the NOAA’s database proves to be a remarkably powerful determinant of climate variability over the period from 1960 to 2006 not only at Barrow but across all USA, as it is always highly statistically significant at better than the 95% level of confidence for both annual mean minimum and maximum annual temperatures. This is hardly surprising, if only because in reality, as Tans has noted, “global annual evaporation equals ~500,000 billion metric tons. Compare that to fossil CO2 emissions of ~8.5 billion ton C/year,” and even the total level of [CO2] is only 827 billion tonnes of carbon equivalent. It would seem to be a case of the tail wagging the dog if the additions to [CO2] from human burning of hydrocarbon fuels have raised global temperatures enough (just 0.0125°C p.a. [per year] since 1950) to generate annual evaporation of 500,000 billion tonnes of [H2O].


Newell and Dopplick, 1979

Estimates of the atmospheric temperature changes due to a doubling of CO2 concentration have be with a standard radiative flux model.  They yield temperature changes of >0.25 K.  It appears that the much larger changes predicted by other models arise from additional water vapor evaporated into the atmosphere and not from the CO2 itself. … It is important to stress…that CO2 is not the main constituent involved in infrared transfer.  Water vapor plays the major role and ozone is also of importance.  … Twenty of the spectral intervals are dominated by water vapor and the other two contain CO2 (~15 µm) and O3 (~9.6 µm), although overlap with water vapor is also included. Calculations were performed for CO2 concentrations of 330 and 600 ppmv, taking care to include the changed CO2 concentrations also in the near-infrared solar absorption (cf. Newell et al., 1972). Both sets of computations were also repeated with cloud absent.   The infrared flux dominated by CO2, as is well known, is only about 10% of that controlled by water vapor. 


Ollila, 2012

Scientists are still debating the reasons for “global warming”. The author questions the validity of the calculations for the models published by the Intergovernmental Panel on Climate Change (IPCC) and especially the future scenarios. Through spectral calculations, the author finds that water vapour accounts for approximately 87% of the greenhouse (GH) effect and only 10% of CO2.  A doubling of the present level of CO2 would increase the global temperature by only 0.51 °C without water feedback.

Read rest at No Tricks Zone

Trackback from your site.

Comments (6)

  • Avatar

    Spurwing Plover

    |

    CO2 is needed for plants to grow if it was phased out becuase of junk science and the usial eco-wacko idiots the planet would be dead and not from smog but from Enviroental Overkill which is the title for a book by Dixie Lee Ray which every conservative must read

    Reply

  • Avatar

    Sonnyhill

    |

    A farmer worries about frost in the spring and fall. Last frost (spring) and first frost (autumn) defines our growing season length, the longer the better. Last and first almost always occur on clear cloudless nights. Clouds are a blankets that saves crops from premature death.

    Carbon dioxide is not a factor.

    Reply

    • Avatar

      G

      |

      You mean farmers are NOT running outside with CO2 meters to gauge the likelihood of frost?
      Clouds you say?
      Wow!

      Reply

  • Avatar

    G

    |

    So here’s the climate “retained heat” score:

    Water Vapor = 200
    CO2 = 1

    Eco-leftists are betting our money on CO2

    Reply

    • Avatar

      Sonnyhill

      |

      C’mon G. Everybody knows CO2 drives up water vapor. That’s why the Great Lakes are full to the brim! Unless you believe that Global Warming causes drought and famine. Then don’t believe your lyin’ eyes. Doesn’t matter that Earth is getting greener and more blue, we need to change our evil lifestyle. Let China show us the way.

      Reply

Leave a comment