climate change dispatch logo climate change dispatch logo small

How wetlands and agriculture, not fossil fuels, could be causing a global rise in methane

Rice field

Rice field

Research published in the American Geophysical Union’s journal Global Biogeochemical Cycles shows that recent rises in levels of methane in our atmosphere is being driven by biological sources, such as swamp gas, cow burps, or rice fields, rather than fossil fuel emissions.

Atmospheric methane is a major greenhouse gas that traps heat in our atmosphere, contributing to global warming. Its levels have been growing strongly since 2007, and in 2014 the growth rate of methane in the atmosphere was double that of previous years, largely driven by biological sources as opposed to fossil fuel emissions.

Conventional wisdom refuted

The study, led by researchers at Royal Holloway, University of London shows that methane emissions have been increasing, particularly in the tropics. Researchers discovered that biological sources, such as methane emissions from swamps, make up the majority of the increase.

“Our results go against conventional thinking that the recent increase in atmospheric methane must be caused by increased emissions from natural gas, oil, and coal production. Our analysis of methane’s isotopic composition clearly points to increased emissions from microbial sources, such as wetlands or agriculture” said lead author Euan Nisbet from Royal Holloway, University of London’s Department of Earth Sciences.

Methane growth rate doubles

Professor Nisbet says “Atmospheric methane is one of the most potent greenhouses gases. Methane increased through most of the 20th century, driven largely by leaks from the gas and coal industries.”

He continued, “At the beginning of this century it appeared that the amount of methane in the air was stabilising, but since 2007 the levels of methane have started growing again. The year 2014 was extreme, with the growth rate doubling, and large increases were seen across the globe.”

Read rest…

Share via